Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36622950

RESUMO

Molecular dynamics with excited normal modes (MDeNM) is an enhanced sampling method for exploring conformational changes in proteins with minimal biases. The excitation corresponds to injecting kinetic energy along normal modes describing intrinsic collective motions. Herein, we developed a new automated open-source implementation, MDexciteR (https://github.com/mcosta27/MDexciteR), enabling the integration of MDeNM with two commonly used simulation programs with GPU support. Second, we generalized the method to include the excitation of principal components calculated from experimental ensembles. Finally, we evaluated whether the use of coarse-grained normal modes calculated with elastic network representations preserved the performance and accuracy of the method. The advantages and limitations of these new approaches are discussed based on results obtained for three different protein test cases: two globular and a protein/membrane system.

2.
Int J Mol Sci ; 23(14)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35887213

RESUMO

Energy metabolism reprogramming was recently listed as a hallmark of cancer. In this process, the switch from pyruvate kinase isoenzyme type M1 to pyruvate kinase isoenzyme type M2 (PKM2) is believed to play a crucial role. Interestingly, the activity of the active form of PKM2 can efficiently be inhibited by the high-mobility group box 1 (HMGB1) protein, leading to a rapid blockage of glucose-dependent aerobic respiration and cancer cell death. HMGB1 is a member of the HMG protein family. It contains two DNA-binding HMG-box domains and an acidic C-terminal tail capable of positively or negatively modulating its biological properties. In this work, we report that the deletion of the C-terminal tail of HMGB1 increases its activity towards a large panel of cancer cells without affecting the viability of normal immortalized fibroblasts. Moreover, in silico analysis suggests that the truncated form of HMGB1 retains the capacity of the full-length protein to interact with PKM2. However, based on the capacity of the cells to circumvent oxidative phosphorylation inhibition, we were able to identify either a cytotoxic or cytostatic effect of the proteins. Together, our study provides new insights in the characterization of the anticancer activity of HMGB1.


Assuntos
Proteína HMGB1 , Domínios HMG-Box , Proteína HMGB1/metabolismo , Isoenzimas/metabolismo , Estrutura Terciária de Proteína , Piruvato Quinase/metabolismo
3.
Front Mol Biosci ; 9: 832847, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187088

RESUMO

Recent years have seen several hybrid simulation methods for exploring the conformational space of proteins and their complexes or assemblies. These methods often combine fast analytical approaches with computationally expensive full atomic molecular dynamics (MD) simulations with the goal of rapidly sampling large and cooperative conformational changes at full atomic resolution. We present here a systematic comparison of the utility and limits of four such hybrid methods that have been introduced in recent years: MD with excited normal modes (MDeNM), collective modes-driven MD (CoMD), and elastic network model (ENM)-based generation, clustering, and relaxation of conformations (ClustENM) as well as its updated version integrated with MD simulations (ClustENMD). We analyzed the predicted conformational spaces using each of these four hybrid methods, applied to four well-studied proteins, triosephosphate isomerase (TIM), 3-phosphoglycerate kinase (PGK), HIV-1 protease (PR) and HIV-1 reverse transcriptase (RT), which provide extensive ensembles of experimental structures for benchmarking and comparing the methods. We show that a rigorous multi-faceted comparison and multiple metrics are necessary to properly assess the differences between conformational ensembles and provide an optimal protocol for achieving good agreement with experimental data. While all four hybrid methods perform well in general, being especially useful as computationally efficient methods that retain atomic resolution, the systematic analysis of the same systems by these four hybrid methods highlights the strengths and limitations of the methods and provides guidance for parameters and protocols to be adopted in future studies.

4.
Circulation ; 143(16): 1597-1613, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33590773

RESUMO

BACKGROUND: MicroRNAs (miRs) play critical roles in regulation of numerous biological events, including cardiac electrophysiology and arrhythmia, through a canonical RNA interference mechanism. It remains unknown whether endogenous miRs modulate physiologic homeostasis of the heart through noncanonical mechanisms. METHODS: We focused on the predominant miR of the heart (miR1) and investigated whether miR1 could physically bind with ion channels in cardiomyocytes by electrophoretic mobility shift assay, in situ proximity ligation assay, RNA pull down, and RNA immunoprecipitation assays. The functional modulations of cellular electrophysiology were evaluated by inside-out and whole-cell patch clamp. Mutagenesis of miR1 and the ion channel was used to understand the underlying mechanism. The effect on the heart ex vivo was demonstrated through investigating arrhythmia-associated human single nucleotide polymorphisms with miR1-deficient mice. RESULTS: We found that endogenous miR1 could physically bind with cardiac membrane proteins, including an inward-rectifier potassium channel Kir2.1. The miR1-Kir2.1 physical interaction was observed in mouse, guinea pig, canine, and human cardiomyocytes. miR1 quickly and significantly suppressed IK1 at sub-pmol/L concentration, which is close to endogenous miR expression level. Acute presence of miR1 depolarized resting membrane potential and prolonged final repolarization of the action potential in cardiomyocytes. We identified 3 miR1-binding residues on the C-terminus of Kir2.1. Mechanistically, miR1 binds to the pore-facing G-loop of Kir2.1 through the core sequence AAGAAG, which is outside its RNA interference seed region. This biophysical modulation is involved in the dysregulation of gain-of-function Kir2.1-M301K mutation in short QT or atrial fibrillation. We found that an arrhythmia-associated human single nucleotide polymorphism of miR1 (hSNP14A/G) specifically disrupts the biophysical modulation while retaining the RNA interference function. It is remarkable that miR1 but not hSNP14A/G relieved the hyperpolarized resting membrane potential in miR1-deficient cardiomyocytes, improved the conduction velocity, and eliminated the high inducibility of arrhythmia in miR1-deficient hearts ex vivo. CONCLUSIONS: Our study reveals a novel evolutionarily conserved biophysical action of endogenous miRs in modulating cardiac electrophysiology. Our discovery of miRs' biophysical modulation provides a more comprehensive understanding of ion channel dysregulation and may provide new insights into the pathogenesis of cardiac arrhythmias.


Assuntos
Canais Iônicos/metabolismo , Potenciais da Membrana/fisiologia , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Cães , Cobaias , Humanos , Camundongos
5.
Proteins ; 88(12): 1675-1687, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32683717

RESUMO

Network theory methods and molecular dynamics (MD) simulations are accepted tools to study allosteric regulation. Indeed, dynamic networks built upon correlation analysis of MD trajectories provide detailed information about communication paths between distant sites. In this context, we aimed to understand whether the efficiency of intramolecular communication could be used to predict the allosteric potential of a given site. To this end, we performed MD simulations and network theory analyses in cathepsin K (catK), whose allosteric sites are well defined. To obtain a quantitative measure of the efficiency of communication, we designed a new protocol that enables the comparison between properties related to ensembles of communication paths obtained from different sites. Further, we applied our strategy to evaluate the allosteric potential of different catK cavities not yet considered for drug design. Our predictions of the allosteric potential based on intramolecular communication correlate well with previous catK experimental and theoretical data. We also discuss the possibility of applying our approach to other proteins from the same family.


Assuntos
Catepsina K/química , Catepsina K/metabolismo , Domínios e Motivos de Interação entre Proteínas , Regulação Alostérica , Sítio Alostérico , Sítios de Ligação , Comunicação , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica
6.
J Chem Inf Model ; 60(5): 2419-2423, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-31944765

RESUMO

Previous studies demonstrated the efficiency of the Molecular Dynamics with excited Normal Modes (MDeNM) method on the characterization of large structural changes at a low computational cost. We present here MDeNM-EMfit, an extension of the original method designed to the flexible fit of structures into cryo-EM maps. Here, instead of a uniform exploration of the collective motions described by normal modes, sampling is directed toward conformations with increased correlations with the experimental map. Future perspectives to improve the accuracy of fitting and speed of calculations are discussed in light of the results.


Assuntos
Simulação de Dinâmica Molecular , Microscopia Crioeletrônica , Conformação Proteica
7.
Biochim Biophys Acta Proteins Proteom ; 1868(1): 140248, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31279935

RESUMO

Fungi cellulases are used to degrade cellulose-containing biomass for bioethanol production. Industrial cellulases such as Cel7A from Trichoderma reesei (TrCel7A) are critical in this process. Thus, the understanding of structure and dynamics is crucial for engineering variants with improved cellulolytic activity. This cellulase consists of two domains connected by a flexible and highly glycosylated linker. However, the linker flexibility has hindered the determination of Cel7A complete structure. Herein, based on atomic and sparse data, we applied integrative modelling to build a model of the complete enzyme structure. Next, through simulations, we studied the glycosylation effects on the structure and dynamics of a solubilized TrCel7A. Essential dynamics analysis showed that O-glycosylation in the linker led to the stabilization of protein overall dynamics. O-linked glycans seem to restrict protein dihedral angles distribution in this region, selecting more elongated conformations. Besides the reduced flexibility, functional interdomain motions occurred in a more concerted way in the glycosylated system. In contrast, in the absence of glycosylation, we observed vast conformational plasticity with the functional domains frequently collapsing. We report here evidence that targeting Cel7A linker flexibility by point mutations including modification of glycosylation sites could be a promising design strategy to improve cellulase activity.


Assuntos
Celulase/química , Modelos Moleculares , Trichoderma/enzimologia , Proteínas Fúngicas/química , Glicosilação , Conformação Proteica
8.
Sci Rep ; 9(1): 3870, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846766

RESUMO

Serine proteinase inhibitors (serpins), typically fold to a metastable native state and undergo a major conformational change in order to inhibit target proteases. However, conformational lability of the native serpin fold renders them susceptible to misfolding and aggregation, and underlies misfolding diseases such as α1-antitrypsin deficiency. Serpin specificity towards its protease target is dictated by its flexible and solvent exposed reactive centre loop (RCL), which forms the initial interaction with the target protease during inhibition. Previous studies have attempted to alter the specificity by mutating the RCL to that of a target serpin, but the rules governing specificity are not understood well enough yet to enable specificity to be engineered at will. In this paper, we use conserpin, a synthetic, thermostable serpin, as a model protein with which to investigate the determinants of serpin specificity by engineering its RCL. Replacing the RCL sequence with that from α1-antitrypsin fails to restore specificity against trypsin or human neutrophil elastase. Structural determination of the RCL-engineered conserpin and molecular dynamics simulations indicate that, although the RCL sequence may partially dictate specificity, local electrostatics and RCL dynamics may dictate the rate of insertion during protease inhibition, and thus whether it behaves as an inhibitor or a substrate. Engineering serpin specificity is therefore substantially more complex than solely manipulating the RCL sequence, and will require a more thorough understanding of how conformational dynamics achieves the delicate balance between stability, folding and function required by the exquisite serpin mechanism of action.


Assuntos
Serpinas/metabolismo , Sequência de Aminoácidos , Escherichia coli , Humanos , Elastase de Leucócito/metabolismo , Simulação de Dinâmica Molecular , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , Dobramento de Proteína , Serpinas/química , Serpinas/genética , Eletricidade Estática , Tripsina/metabolismo
9.
Sci Rep ; 6: 35385, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27767076

RESUMO

The kallikrein-related peptidase (KLK) family of proteases is involved in many aspects of human health and disease. One member of this family, KLK4, has been implicated in cancer development and metastasis. Understanding mechanisms of inactivation are critical to developing selective KLK4 inhibitors. We have determined the X-ray crystal structures of KLK4 in complex with both sunflower trypsin inhibitor-1 (SFTI-1) and a rationally designed SFTI-1 derivative to atomic (~1 Å) resolution, as well as with bound nickel. These structures offer a structural rationalization for the potency and selectivity of these inhibitors, and together with MD simulation and computational analysis, reveal a dynamic pathway between the metal binding exosite and the active site, providing key details of a previously proposed allosteric mode of inhibition. Collectively, this work provides insight into both direct and indirect mechanisms of inhibition for KLK4 that have broad implications for the enzymology of the serine protease superfamily, and may potentially be exploited for the design of therapeutic inhibitors.


Assuntos
Calicreínas/antagonistas & inibidores , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Regulação da Expressão Gênica , Helianthus , Humanos , Ligação de Hidrogênio , Metais/química , Simulação de Dinâmica Molecular , Níquel/química , Peptídeos Cíclicos/química , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Serina Proteases/química , Tripsina/química
10.
Sci Rep ; 6: 33958, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27667094

RESUMO

The rugged folding landscapes of functional proteins puts them at risk of misfolding and aggregation. Serine protease inhibitors, or serpins, are paradigms for this delicate balance between function and misfolding. Serpins exist in a metastable state that undergoes a major conformational change in order to inhibit proteases. However, conformational labiality of the native serpin fold renders them susceptible to misfolding, which underlies misfolding diseases such as α1-antitrypsin deficiency. To investigate how serpins balance function and folding, we used consensus design to create conserpin, a synthetic serpin that folds reversibly, is functional, thermostable, and polymerization resistant. Characterization of its structure, folding and dynamics suggest that consensus design has remodeled the folding landscape to reconcile competing requirements for stability and function. This approach may offer general benefits for engineering functional proteins that have risky folding landscapes, including the removal of aggregation-prone intermediates, and modifying scaffolds for use as protein therapeutics.

11.
J Chem Theory Comput ; 11(6): 2755-67, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26575568

RESUMO

Proteins are found in solution as ensembles of conformations in dynamic equilibrium. Exploration of functional motions occurring on micro- to millisecond time scales by molecular dynamics (MD) simulations still remains computationally challenging. Alternatively, normal mode (NM) analysis is a well-suited method to characterize intrinsic slow collective motions, often associated with protein function, but the absence of anharmonic effects preclude a proper characterization of conformational distributions in a multidimensional NM space. Using both methods jointly appears to be an attractive approach that allows an extended sampling of the conformational space. In line with this view, the MDeNM (molecular dynamics with excited normal modes) method presented here consists of multiple-replica short MD simulations in which motions described by a given subset of low-frequency NMs are kinetically excited. This is achieved by adding additional atomic velocities along several randomly determined linear combinations of NM vectors, thus allowing an efficient coupling between slow and fast motions. The relatively high-energy conformations generated with MDeNM are further relaxed with standard MD simulations, enabling free energy landscapes to be determined. Two widely studied proteins were selected as examples: hen egg lysozyme and HIV-1 protease. In both cases, MDeNM provides a larger extent of sampling in a few nanoseconds, outperforming long standard MD simulations. A high degree of correlation with motions inferred from experimental sources (X-ray, EPR, and NMR) and with free energy estimations obtained by metadynamics was observed. Finally, the large sets of conformations obtained with MDeNM can be used to better characterize relevant dynamical populations, allowing for a better interpretation of experimental data such as SAXS curves and NMR spectra.


Assuntos
Protease de HIV/química , Simulação de Dinâmica Molecular , Muramidase/química , Protease de HIV/metabolismo , Muramidase/metabolismo , Conformação Proteica
12.
PLoS One ; 10(10): e0140219, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26470022

RESUMO

The growing problem of antibiotic resistance underlies the critical need to develop new treatments to prevent and control resistant bacterial infection. Exogenous application of bacteriophage lysins results in rapid and specific destruction of Gram-positive bacteria and therefore lysins represent novel antibacterial agents. The PlyC phage lysin is the most potent lysin characterized to date and can rapidly lyse Group A, C and E streptococci. Previously, we have determined the X-ray crystal structure of PlyC, revealing a complicated and unique arrangement of nine proteins. The scaffold features a multimeric cell-wall docking assembly bound to two catalytic domains that communicate and work synergistically. However, the crystal structure appeared to be auto-inhibited and raised important questions as to the mechanism underlying its extreme potency. Here we use small angle X-ray scattering (SAXS) and reveal that the conformational ensemble of PlyC in solution is different to that in the crystal structure. We also investigated the flexibility of the enzyme using both normal mode (NM) analysis and molecular dynamics (MD) simulations. Consistent with our SAXS data, MD simulations show rotational dynamics of both catalytic domains, and implicate inter-domain communication in achieving a substrate-ready conformation required for enzyme function. Our studies therefore provide insights into how the domains in the PlyC holoenzyme may act together to achieve its extraordinary potency.


Assuntos
Bacteriófagos/enzimologia , Enzimas/química , Streptococcus/virologia , Bacteriófagos/química , Domínio Catalítico , Cristalografia por Raios X/métodos , Enzimas/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo
13.
Biophys J ; 109(6): 1179-89, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26255588

RESUMO

Cyclin-dependent kinases (CDKs) and their associated regulatory cyclins are central for timely regulation of cell-cycle progression. They constitute attractive pharmacological targets for development of anticancer therapeutics, since they are frequently deregulated in human cancers and contribute to sustained, uncontrolled tumor proliferation. Characterization of their structural/dynamic features is essential to gain in-depth insight into structure-activity relationships. In addition, the identification of druggable pockets or key intermediate conformations yields potential targets for the development of novel classes of inhibitors. Structural studies of CDK2/cyclin A have provided a wealth of information concerning monomeric/heterodimeric forms of this kinase. There is, however, much less structural information for other CDK/cyclin complexes, including CDK4/cyclin D1, which displays an alternative (open) position of the cyclin partner relative to CDK, contrasting with the closed CDK2/cyclin A conformation. In this study, we carried out normal-mode analysis and enhanced sampling simulations with our recently developed method, molecular dynamics with excited normal modes, to understand the conformational equilibrium on these complexes. Interestingly, the lowest-frequency normal mode computed for each complex described the transition between the open and closed conformations. Exploration of these motions with an explicit-solvent representation using molecular dynamics with excited normal modes confirmed that the closed conformation is the most stable for the CDK2/cyclin A complex, in agreement with their experimentally available structures. On the other hand, we clearly show that an open↔closed equilibrium may exist in CDK4/cyclin D1, with closed conformations resembling that captured for CDK2/cyclin A. Such conformational preferences may result from the distinct distributions of frustrated contacts in each complex. Using the same approach, the putative roles of the Thr(160) phosphoryl group and the T-loop conformation were investigated. These results provide a dynamic view of CDKs revealing intermediate conformations not yet characterized for CDK members other than CDK2, which will be useful for the design of inhibitors targeting critical conformational transitions.


Assuntos
Ciclina A/metabolismo , Ciclina D1/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Ciclina A/química , Ciclina D1/química , Quinase 2 Dependente de Ciclina/química , Quinase 4 Dependente de Ciclina/química , Simulação de Dinâmica Molecular , Movimento (Física) , Conformação Proteica , Solventes/química , Relação Estrutura-Atividade , Água/química
14.
FEBS J ; 282(7): 1225-41, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25619277

RESUMO

Adaptive metabolic reprogramming gives cancer cells a proliferative advantage. Tumour cells extensively use glycolysis to sustain anabolism and produce serine, which not only refuels the one-carbon units necessary for the synthesis of nucleotide precursors and for DNA methylation, but also affects the cellular redox homeostasis. Given its central role in serine metabolism, serine hydroxymethyltransferase (SHMT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, is an attractive target for tumour chemotherapy. In humans, the cytosolic isoform (SHMT1) and the mitochondrial isoform (SHMT2) have distinct cellular roles, but high sequence identity and comparable catalytic properties, which may complicate development of successful therapeutic strategies. Here, we investigated how binding of the cofactor PLP controls the oligomeric state of the human isoforms. The fact that eukaryotic SHMTs are tetrameric proteins while bacterial SHMTs function as dimers may suggest that the quaternary assembly in eukaryotes provides an advantage to fine-tune SHMT function and differentially regulate intertwined metabolic fluxes, and may provide a tool to address the specificity problem. We determined the crystal structure of SHMT2, and compared it to the apo-enzyme structure, showing that PLP binding triggers a disorder-to-order transition accompanied by a large rigid-body movement of the two cofactor-binding domains. Moreover, we demonstrated that SHMT1 exists in solution as a tetramer, both in the absence and presence of PLP, while SHMT2 undergoes a dimer-to-tetramer transition upon PLP binding. These findings indicate an unexpected structural difference between the two human SHMT isoforms, which opens new perspectives for understanding their differing behaviours, roles or regulation mechanisms in response to PLP availability in vivo.


Assuntos
Glicina Hidroximetiltransferase/química , Fosfato de Piridoxal/química , Apoenzimas/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína
15.
Proteins ; 83(2): 373-82, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25488602

RESUMO

The interaction between human Toll-like receptor 4 (hTLR4) and its coreceptor, myeloid differentiation factor 2 (MD-2), is important in Gram-negative bacteria lipopolysaccharide (LPS) recognition. In this process, MD-2 recognizes LPS and promotes the dimerization of the complex hTLR4-MD-2-LPS, triggering an intracellular immune signaling. In this study, we employed distinct computational methods to explore the dynamical properties of the hTLR4-MD-2 complex and investigated the implications of the coreceptor complexation to the structural biology of hTLR4. We characterized both global and local dynamics of free and MD-2 complexed hTLR4, in both (hTLR4-MD-2)1 and (hTLR4-MD-2)2 states. Both molecular dynamics and normal mode analysis reveled a stabilization of the terminal regions of hTLR4 upon complexation to MD-2. We are able to identify conserved important residues involved on the hTLR4-MD-2 interaction dynamics and disclose C-terminal motions that may be associated to the signaling process upon oligomerization.


Assuntos
Antígeno 96 de Linfócito/química , Receptor 4 Toll-Like/química , Sítios de Ligação , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína
16.
Proc Natl Acad Sci U S A ; 111(25): E2524-9, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24927554

RESUMO

The human neuroendocrine enzyme glutamate decarboxylase (GAD) catalyses the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) using pyridoxal 5'-phosphate as a cofactor. GAD exists as two isoforms named according to their respective molecular weights: GAD65 and GAD67. Although cytosolic GAD67 is typically saturated with the cofactor (holoGAD67) and constitutively active to produce basal levels of GABA, the membrane-associated GAD65 exists mainly as the inactive apo form. GAD65, but not GAD67, is a prevalent autoantigen, with autoantibodies to GAD65 being detected at high frequency in patients with autoimmune (type 1) diabetes and certain other autoimmune disorders. The significance of GAD65 autoinactivation into the apo form for regulation of neurotransmitter levels and autoantibody reactivity is not understood. We have used computational and experimental approaches to decipher the nature of the holo → apo conversion in GAD65 and thus, its mechanism of autoinactivation. Molecular dynamics simulations of GAD65 reveal coupling between the C-terminal domain, catalytic loop, and pyridoxal 5'-phosphate-binding domain that drives structural rearrangement, dimer opening, and autoinactivation, consistent with limited proteolysis fragmentation patterns. Together with small-angle X-ray scattering and fluorescence spectroscopy data, our findings are consistent with apoGAD65 existing as an ensemble of conformations. Antibody-binding kinetics suggest a mechanism of mutually induced conformational changes, implicating the flexibility of apoGAD65 in its autoantigenicity. Although conformational diversity may provide a mechanism for cofactor-controlled regulation of neurotransmitter biosynthesis, it may also come at a cost of insufficient development of immune self-tolerance that favors the production of GAD65 autoantibodies.


Assuntos
Autoimunidade , Glutamato Descarboxilase , Homeostase/imunologia , Simulação de Dinâmica Molecular , Neurotransmissores , Ácido gama-Aminobutírico , Autoanticorpos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Glutamato Descarboxilase/química , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/imunologia , Humanos , Neurotransmissores/química , Neurotransmissores/genética , Neurotransmissores/imunologia , Multimerização Proteica , Relação Estrutura-Atividade , Ácido gama-Aminobutírico/química , Ácido gama-Aminobutírico/genética , Ácido gama-Aminobutírico/imunologia
17.
BMC Genomics ; 15 Suppl 7: S5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25573486

RESUMO

BACKGROUND: Over the last decades, a vast structural knowledge has been gathered on the HIV-1 protease (PR). Noticeably, most of the studies focused the B-subtype, which has the highest prevalence in developed countries. Accordingly, currently available anti-HIV drugs target this subtype, with considerable benefits for the corresponding patients. RESULTS: Herein, we used molecular dynamics simulations to investigate the role of this polymorphism on the interaction of PR with six of its natural cleavage-sites substrates. CONCLUSIONS: With multiple approaches and analyses we identified structural and dynamical determinants associated with the changes found in the binding affinity of the M36I variant. This mutation influences the flexibility of both PR and its complexed substrate. The observed impact of M36I, suggest that combination with other non-B subtype polymorphisms, could lead to major effects on the interaction with the 12 known cleavage sites, which should impact the virion maturation.


Assuntos
Protease de HIV/genética , Protease de HIV/metabolismo , Polimorfismo Genético , Sítios de Ligação/genética , Simulação por Computador , Protease de HIV/química , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica/genética , Especificidade por Substrato/genética , Proteínas Virais/química , Proteínas Virais/metabolismo
18.
J Mol Graph Model ; 29(2): 137-47, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20541446

RESUMO

A major concern in the antiretroviral (ARV) treatment of HIV infections with protease inhibitors (PI) is the emergence of resistance, which results from the selection of distinct mutations within the viral protease (PR) gene. Among patients who do not respond to treatment with the PI nelfinavir (NFV), the D30N mutation is often observed. However, several reports have shown that D30N emerges with different frequencies in distinct HIV-1 genetic forms or subtypes. In the present work, we analyzed the binding of NFV and the Gag substrate CA/p2 to PR from HIV-1 subtypes B and C through molecular dynamics (MD) simulations. The wild-type and drug-resistant D30N mutants were investigated in both subtypes. The compensatory mutations N83T and N88D, observed in vitro and in vivo when subtype C acquires D30N, were also studied. D30N appears to facilitate conformational changes in subtype B PR, but not in that from subtype C, and this could be associated with disestablishment of an alpha-helical region of the PR. Furthermore, the total contact areas of NFV or the CA/p2 substrate with the mutant PR correlated with changes in the resistance patterns and replicative capacity. Finally, we observed in our MD simulations that mutant PR proteins show different patterns for hydrophobic/van der Waals contact. These findings suggest that different molecular mechanisms contribute to resistance, and we propose that a single mutation has distinct impacts on different HIV-1 subtypes.


Assuntos
Farmacorresistência Viral/genética , Inibidores da Protease de HIV/farmacologia , Protease de HIV/genética , HIV-1/genética , Simulação de Dinâmica Molecular , Mutação/genética , Nelfinavir/farmacologia , Sequência de Aminoácidos , Sítios de Ligação , Farmacorresistência Viral/efeitos dos fármacos , Protease de HIV/química , HIV-1/classificação , HIV-1/efeitos dos fármacos , Humanos , Ligação de Hidrogênio/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Ligantes , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Especificidade por Substrato/efeitos dos fármacos , Propriedades de Superfície/efeitos dos fármacos , Termodinâmica
19.
BMC Genomics ; 11 Suppl 5: S5, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21210971

RESUMO

BACKGROUND: Cathepsin B (catB) is a promising target for anti-cancer drug design due to its implication in several steps of tumorigenesis. catB activity and inhibition are pH-dependent, making it difficult to identify efficient inhibitor candidates for clinical trials. In addition it is known that heparin binding stabilizes the enzyme in alkaline conditions. However, the molecular mechanism of stabilization is not well understood, indicating the need for more detailed structural and dynamic studies in order to clarify the influence of pH and heparin binding on catB stability. RESULTS: Our pKa calculations of catB titratable residues revealed distinct protonation states under different pH conditions for six key residues, of which four lie in the crucial interdomain interface. This implies changes in the overall charge distribution at the catB surface, as revealed by calculation of the electrostatic potential. We identified two basic surface regions as possible heparin binding sites, which were confirmed by docking calculations. Molecular dynamics (MD) of both apo catB and catB-heparin complexes were performed using protonation states for catB residues corresponding to the relevant acidic or alkaline conditions. The MD of apo catB at pH 5.5 was very stable, and presented the highest number and occupancy of hydrogen bonds within the inter-domain interface. In contrast, under alkaline conditions the enzyme's overall flexibility was increased: interactions between active site residues were lost, helical content decreased, and domain separation was observed as well as high-amplitude motions of the occluding loop - a main target of drug design studies. Essential dynamics analysis revealed that heparin binding modulates large amplitude motions promoting rearrangement of contacts between catB domains, thus favoring the maintenance of helical content as well as active site stability. CONCLUSIONS: The results of our study contribute to unraveling the molecular events involved in catB inactivation in alkaline pH, highlighting the fact that protonation changes of few residues can alter the overall dynamics of an enzyme. Moreover, we propose an allosteric role for heparin in the regulation of catB stability in such a manner that the restriction of enzyme flexibility would allow the establishment of stronger contacts and thus the maintenance of overall structure.


Assuntos
Regulação Alostérica/fisiologia , Catepsina B/metabolismo , Heparina/metabolismo , Modelos Moleculares , Regulação Alostérica/genética , Sítios de Ligação/genética , Catepsina B/química , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Eletricidade Estática
20.
BMC Genomics ; 11 Suppl 5: S7, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21210973

RESUMO

BACKGROUND: G. diazotrophicus and A. vinelandii are aerobic nitrogen-fixing bacteria. Although oxygen is essential for the survival of these organisms, it irreversibly inhibits nitrogenase, the complex responsible for nitrogen fixation. Both microorganisms deal with this paradox through compensatory mechanisms. In A. vinelandii a conformational protection mechanism occurs through the interaction between the nitrogenase complex and the FeSII protein. Previous studies suggested the existence of a similar system in G. diazotrophicus, but the putative protein involved was not yet described. This study intends to identify the protein coding gene in the recently sequenced genome of G. diazotrophicus and also provide detailed structural information of nitrogenase conformational protection in both organisms. RESULTS: Genomic analysis of G. diazotrophicus sequences revealed a protein coding ORF (Gdia0615) enclosing a conserved "fer2" domain, typical of the ferredoxin family and found in A. vinelandii FeSII. Comparative models of both FeSII and Gdia0615 disclosed a conserved beta-grasp fold. Cysteine residues that coordinate the 2[Fe-S] cluster are in conserved positions towards the metallocluster. Analysis of solvent accessible residues and electrostatic surfaces unveiled an hydrophobic dimerization interface. Dimers assembled by molecular docking presented a stable behaviour and a proper accommodation of regions possibly involved in binding of FeSII to nitrogenase throughout molecular dynamics simulations in aqueous solution. Molecular modeling of the nitrogenase complex of G. diazotrophicus was performed and models were compared to the crystal structure of A. vinelandii nitrogenase. Docking experiments of FeSII and Gdia0615 with its corresponding nitrogenase complex pointed out in both systems a putative binding site presenting shape and charge complementarities at the Fe-protein/MoFe-protein complex interface. CONCLUSIONS: The identification of the putative FeSII coding gene in G. diazotrophicus genome represents a large step towards the understanding of the conformational protection mechanism of nitrogenase against oxygen. In addition, this is the first study regarding the structural complementarities of FeSII-nitrogenase interactions in diazotrophic bacteria. The combination of bioinformatic tools for genome analysis, comparative protein modeling, docking calculations and molecular dynamics provided a powerful strategy for the elucidation of molecular mechanisms and structural features of FeSII-nitrogenase interaction.


Assuntos
Azotobacter vinelandii/enzimologia , Gluconacetobacter/enzimologia , Modelos Moleculares , Nitrogenase/metabolismo , Oxigênio/metabolismo , Conformação Proteica , Sequência de Aminoácidos , Azotobacter vinelandii/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biologia Computacional , Genômica , Gluconacetobacter/genética , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Fixação de Nitrogênio , Nitrogenase/química , Nitrogenase/genética , Ligação Proteica , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...